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Abstract— This paper develops a pattern recognition and
machine learning system to localize cell colony subtypes in multi-
label, phase-contrast microscopy images. A convolutional neural
network is trained to recognize homogeneous cell colonies, and is
used in a sliding-window patch based testing method to localize
these homogeneous cell types within heterogeneous, multi-label
images. The method is used to determine the effects of nicotine
on induced pluripotent stem cells expressing the Huntington’s
disease phenotype. The results of the network are compared
to those of an ECOC classifier trained on texture features.
The ability of the network to localize cell phenotypes within
heterogeneous colonies is visualized and the temporal behavior
of stem cells is analyzed.

I. INTRODUCTION

Huntington’s disease is a rare neurodegenerative disorder
caused by a mutation of the Huntingtin protein. This mutation
causes a functional gain of protein activity, resulting in the
degradation of neurons in the striatum of the brain. Patients
typically display involuntary movements (chorea), and decline
in fine-motor function, memory, and behavioral stability for
many years after onset, until death [1]. There is a need
to understand the underlying molecular mechanisms of the
disease in order to determine effective treatment methods. One
potential therapeutic agent is nicotine, which has been used to
treat Parkinson’s disease patients by slowing the progression of
the disease and reducing associated symptoms via activation of
nicotinic acetyl choline receptors in the brain [2]. Additionally,
nicotine has been shown to have a neuroprotective effect in
Huntington’s disease patients and Huntington’s rat models
[3] [4]. Developmental models employing Human Embryonic
Stem Cells (HESC’s) are also crucial to improving our under-
standing of disease formation and progression.

HESC’s are a reliable developmental model for early
embryonic growth because of their ability to divide indefinitely
(pluripotency), and differentiate, or functionally change, into
any adult cell type. Their morphological behavior is indicative
of developmental status and health, and can be used as a
metric for classification during cellular experimentation. These
cell colonies can either be homogeneous, displaying only one
morphological class, or heterogeneous, displaying more than
one morphological class within the colony. Time-lapse, phase-
contrast microscopy is a common mode of data collection
for stem cell experimentation, as it allows for non-invasive

Fig. 1. Representative examples of cell colony classes (with scale bars to
indicate relative size). From left to right: Top (homogeneous classes): De-
bris, Dense, Spread, Differentiated. Bottom (heterogeneous classes): Partially
Spread, Partially Differentiated. Morphological differences can be exploited to
distinguish between classes using texture pattern features. Without molecular
biomarkers, it is difficult to localize cell colony subtypes within the hetero-
geneous classes.

observation of temporal dynamics.
Normally, data analysis requires hours of by-hand quan-

tification including area measurements and sorting [5]. Many
advances have been made in computer aided analysis including
the implementation of heuristic image processing algorithms,
and classification using image features [6] [7] [10]. Addition-
ally pixel-wise classification has been used to segment colonies
in biological datasets of various forms including images and
videos [11] [9] [12]. Many times, these computer vision and
pattern recognition methods are combined with molecular
biomarker expression in order to validate the location of cell
colony subtypes and structures. Fluorescent biomarkers require
that cells be sacrificed and stained before being imaged, which
prevents the collection of time-lapse videos. However, using
morphological colony patterns, it is possible to localize homo-
geneous portions within contiguous heterogenous colonies.

In this paper a patch-based deep learning classification
method, trained on homogeneous images can is used to
localize cellular subtypes within multi-label, heterogeneous
images. Colony regions-of-interest (ROI) are first detected
in high-resolution microscope images using a segmentation
algorithm and ground-truth the resulting dataset into six mor-
phological classes. A convolutional neural network (CNN) is
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Fig. 2. Diagram of network training, testing and data realignment. A network is first trained on random crops of homogeneous cell colonies. This network
is then used to classify overlapping patches of our heterogeneous testing image. Those patch predictions are combined with the corresponding binary map
in order to localize colony subclasses within the original image. The results are visualized as a colored prediction map where green area represents dense
portions, cyan area corresponds to spread morphology, red is debris colonies, and blue is differentiated portions.

trained on homogenous images, and used in a sliding-window
testing method to recognize these cell types in heterogeneous
colonies.

Classification results of two deep CNN’s (Resnet18 [13],
and VGG [14]) are compared to those of an SVM classi-
fier trained on features from various state-of-the-art texture
descriptors including Local Binary Pattern (LBP) [16], Gray
Level Co-occurance Matrix (GLCM) [17], and Segmentation-
based Fractal Texture Analysis (SFTA) [18]. Classification
performance is quantified using accuracy, true positive rate,
and Receiver Operating Characteristic Area Under the Curve
(ROC-AUC). The applied method addresses the issue of per-
forming heterogeneous colony classification without the use
of invasive biomarker data collection. Experimental findings
regarding stem cell behavior are discussed.

II. RELATED WORK AND CONTRIBUTIONS

A. Related Work

Computer vision and pattern recognition have been used
extensively for biological applications to improve the accuracy
and repeatability of experimental analysis. Zahedi, et al. [7]
combine morphological and dynamic features extracted from
time-lapse, phase-contrast, stem cell microscopy images,
to perform classification. They classify human embryonic
stem cell colonies as healthy, unhealthy, or dying during
exposure to varying levels of cigarette smoke. They track cell
behavior over time and use a combination of morphological
and temporal features to train an SVM classifier to achieve
an accuracy of 97%. Similarly, Perestrelo, et. al. [10]
tackle automated monitoring of induced pluripotent stem
cell reprogramming using morphological segmentation and
random forest machine learning classification. They achieve
high accuracy (90-97%) classification of fluorescently labeled
colonies from high-resolution images. More recently, deep
neural networks have been implemented to automatically learn
features for classification of large, biological datasets. Tasks
such as segmentation and classification can be accurately
combined into one network in order to avoid hand-crafting

algorithms for each dataset.
Buggenthin et. al. [8] employ deep CNNs to predict the

downstream differentiation result of hematopoietic stem
cells using bright field microscope images. They use a
recurrent neural network to incorporate temporal information
and achieve a ROC AUC metric of 87% for their two
class problem. Chen et al. [9] perform cell counting using
convolutional regression networks trained on synthetic
fluorescent data. Van Valen et al. [11] apply deep learning to
perform region detection of cell colonies using a patch based
classification method. While, all of these methods incorporate
automated segmentation, feature extraction, and deep learning
classification, none of them perform multi-label classification
of contiguous, heterogeneous cell colony images without
the use of molecular biomarkers. Therefore, the following
contributions for this paper are proposed:

B. Contributions

1) A novel biological dataset of grayscale, time-lapse im-
ages, with ground-truth labels is established. It will be
made publicly available in the future.

2) Patch based, multi-label classification of heterogeneous
colonies using features learned from homogenous sam-
ples is performed.

3) Biologically relevant conclusions are automatically
drawn from stem cell experiments using pattern recog-
nition and deep learning.

III. TECHNICAL APPROACH

A. Data & Classes

Data comes from the laboratory of Dr. Prue Talbot in the
Department of Cellular and Developmental Biology at the
University of California, Riverside. The experimental null hy-
pothesis is as follows: If there is no neuronal response of cells
expressing Huntington’s disease after exposure to nicotine, a
significant change in morphological behavior corresponding to
phenotypic changes towards the differentiated class should not
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TABLE I
CLASS DESCRIPTIONS

Class Morphological Description Implication
Debris Individual cells or aggregates of circular cells with high

intensity white area
Distressed, dead (apoptotic/necrotic) cell colonies or
individual cells

Dense Homogeneous aggregates of small cells with indis-
cernible cell boundaries, no clear nucleus

Induced pluripotent stem cell colonies

Spread Homogeneous aggregates of large cells with discernible
cell boundaries, clear nuclei, large protrusions

Down stream lineage, intermediate or progenitor cells

Differentiated Individual cells or homogeneous aggregates of cells
with distinct, dark cell body and axon like protrusion(s)

Differentiated neurons

Partially Spread Heterogeneous aggregates of dense and spread colonies,
no differentiated cells

Interacting cell colonies or pluripotent colonies chang-
ing towards down stream intermediates

Partially Differentiated Heterogeneous aggregates of colonies that include at
least one differentiated cell or colony

Interacting cell colonies or cell colonies changing to
downstream neuronal lineages

be observe. To test this hypothesis, human induced pluripotent
stem cells (HiPSC’s) reprogrammed from a patient expressing
the Huntington’s disease phenotype were cultured in standard
culture conditions (37◦C, 90% humidity, 5% CO2). Cultures
were exposed, via culture medium, to various levels of nicotine
solution (Control, 10-5 M, 10-4 M) and allowed to grow for 48
hours in the Biostation CT incubator/microscope unit [Nikon].
Five time-lapse videos were collected for each experimental
condition in order to observe colony dynamics. The Biostation
was programmed to automatically collect one phase-contrast
microscope image of each culture well every hour for the
entirety of the growth period of 48 hours, resulting in a total
of 15 videos * 48 images/video = 720 images. Each image
is a composite of stitched images making up a 2908 x 2908
pixel resolution field of view.

B. Ground-Truth

From these videos it is observed that various homogenous
and heterogeneous cell colonies grow and change towards
downstream lineages over time. While assumptions can be
made about developmental status for more pronounced mor-
phologies, such as neuron-like formations, the dataset does
not contain molecular biomarker validation, and therefore
phenotypes of each cell colony can not be accurately local-
ized. Instead, colonies are classified based on morphological
appearance, and inferences are made about the nature of
cellular changes based on experimental findings and previous
knowledge of stem cell behavior. With the assistance of exper-
imental collaborators, the following classes for our data were
determined: Debris, Dense, Partially Spread, Spread, Partially
Differentiated, and Differentiated. Figure 1 displays example
images for each morphological class, and Table I details the
criteria for classification. Additionally, a hierarchical decision
tree that is based on the downstream differentiation process of
neurons is used to standardize image labeling. The hierarchy
is as follows: Differentiated, Partially Differentiated, Spread,
Partially Spread, Dense, Debris. Ground-truth labels for each
image were provided by-hand over many months, highlighting
the need for automated analysis tools. Images with more than
one cell type are labeled as Partially differentiated or partially
spread based on the highest ranking cell type visible in the

image. The details of our approach are provided in the next
section.

TABLE II
DATA BREAKDOWN

Class Name Number of Images
Debris 3679
Dense 4600

Differentiated 662
Spread 10458

Partially Differentiated 1435
Partially Spread 1225

Total 22059

C. Approach

The general analysis pipeline is outlined in Figure
2. Individual cell colonies are first segmented using
morphological operations and labeled into six classes, saving
the binary maps for patch based testing. Image samples from
the four homogeneous classes are used to train a deep CNN
and the trained network is used to gather predictions for
multi-label, heterogeneous testing image patches using an
overlapping, sliding-window method. The resulting image
predictions are combined with the ROI data from our binary
segmentation maps to localize homogeneous classes within
the heterogeneous images. The final prediction map is used
to measure cell colony area by class, and visualized by
overlaying the prediction map on our input image (Figure 3).

1) Morphological Segmentation: A morphological segmen-
tation algorithm is implemented to provide colony maps for
every image. This approach is employed because of the lack
of biomarker validation such as fluorescent labeling. The algo-
rithm is as follows : 1. Gray scale images are smoothed using a
Gaussian filter. 2. An entropy filter is used to localize textured
colony areas by exploiting the difference between background
and foreground intensity distributions. 3. Thresholding is used
to binarize the image, segmenting high entropy areas. 4.
Finally, morphological opening, hole filling, and small object
removal are used to produce the final binary map. Colony
area bounding boxes are cropped out and saved along with
corresponding binary maps that are combined later with patch
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predictions to localize colony areas. In total, 22,059 individual
cell colony images are detected and labeled each image into
six morphological classes, a breakdown of images by class is
provided in Table II. The four homogenous class images are
then used to extract features for the classifiers.

2) Feature Extraction & Classification: Different colony
classes display distinct morphological patterns, as described
in Table I. Of the six classes, four represent homogeneous
cell colonies (Dense, Spread, Differentiated, Debris), being
composed of only one cell type, and two represent heteroge-
nous colonies (Partially Differentiated, Partially Spread), being
composed of more than one cell type. A CNN is used to extract
features from homogeneous colony images, and a patch based
classification approach is implemented to localize colony types
in the heterogeneous, multi-label, images.

Classification results of Resnet18 and VGG are networks
are compared to those of multi-class error correcting output
codes, support vector machine classifiers (ECOC) [15] trained
on various texture descriptors including Local Binary Patterns
(LBP) [16], Gray level cooccurence matrix (GLCM) [17], and
Segmentation-based Fractal Texture Analysis (SFTA) [18].

3) Network Training & Data Augmentation: The neural
networks and feature descriptors take fixed size, 3-channel,
gray-scale images as input. For the texture feature classifier,
images smaller than 224 × 224 are scaled to have a small-
est size of 224 (while maintaining aspect ratio) and then
train and test on normalized, center crops from the datasets.
During neural network training, images are resized in the
same manner, and random 224 × 224 crops are randomly
flipped horizontally and vertically with independent proba-
bility of 0.5. For the ECOC classifier, data is split with an
80:20 train:test split, and for Resnet18 and VGG11 networks,
80:10:10, train:validate:test split is used, all with 10-fold cross
validation. These networks are sufficiently complex to model
the experimental data and allow for faster training times than
extremely deep networks such as Resnet50. ECOC classifiers
are trained to convergence, and early stopping is implemented
during neural network training. The neural network accounts
for data imbalance using a weighted cross-entropy loss func-
tion, Equation 1. The softmax multinomial distribution outputs
a network prediction probability, x, of class, c, for which
the negative log likelihood loss is multiplied by the weight
proportion, w, of class c in the training dataset, magnifying
the effect that the sample has on network learning. The
network is trained using Stochastic Gradient Descent on mini-
batches of 128 images with a learning rate of 0.001, weight
decay regularization of 0.0001, momentum of 0.9, reducing
the learning rate by a factor of ten every 50 epochs (values
determined via parameter search). The results of our classifiers
are discussed in the following section.

Loss(x, c) = w(c) ∗ (−x(c) + log(
∑
j

exj )) (1)

IV. RESULTS

A. Classification Results

The results of the CNN classifiers are compared to those
of an ECOC classifier trained on features from three state-of-
the-art texture descriptors (Table III). The CNN’s out perform
the texture-descriptor trained ECOC classifiers by more than
25%. Resnet and VGG both perform very similarly, achieving
an overall accuracy of 89%. The texture/classifiers show much
lower accuracy, and a lower true positive rate. In contrast, the
CNN’s maintain a high true positive rate, and also serve as
more robust classifiers, having ROC-AUC’s of approximately
86% (Figure 5). Table IV details associated confusion matrices
for homogeneous classification. The trained network is then
used to perform patch testing over our whole multi-label im-
ages in order to localize sub classes in heterogenous colonies.

B. Patch Testing

After the whole image is processed, pixel areas for each
subclass are measured and incremented based on the time
stamp of the image. Figure 3 shows the resulting prediction
maps for our heterogenous classes at various time points.
Temporal behavior changes of the control and experimental
colonies are observed. For the partially differentiated class,
the colony at the 23 hr mark shows a small differentiated area
(blue) that spreads and detaches over time, being connected
only by a single axon at the end of experimentation. For the
Partially spread class, cells on the outer edge of the colony
begin to change before cells in the center, which is a common
trait of differentiating colonies.

Table IV details the classification accuracy of the patch
based method for the heterogeneous, multi-label images. The
network localizes cell subtypes in heterogeneous images with
a true positive rate of 67% for the partially spread class,
and 27% for partially differentiated. The majority of negative
classifications fall into the differentiated class, indicating that
the network is able to localize the differentiated area in
these multi-label images with low proportions of spread of
dense area. There is also a tradeoff between stride parameter
and computation time, as decreasing the stride parameter
increases accuracy but also results in prohibitively expensive
computations.

C. Experimental Results

Figure 4 displays the change in colony area over time by
class, for each experiment, as determined during patch testing.
The experimental null hypothesis is: If there is no neuronal
response of cells expressing Huntington’s disease phenotype
after exposure to nicotine a significant change in morpholog-
ical behavior corresponding to phenotypic changes towards
differentiated lineages should not be observed. Experimental
observations confirm the null hypothesis, as a large change in
total differentiated colony area is not observed. The growth
rates of spread colony areas increase in a similar manner
for all experimental conditions, and the growth rate of dense
areas is greater under exposure to nicotine, than in control
conditions. Coupled with the stable levels of debris colony
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TABLE III
CLASSIFICATION ACCURACY, TRUE POSITIVE RATE, AND ROC AUC FOR HOMOGENEOUS CLASSES

Method Accuracy ± std. dev. (%) True Positive Rate ± std. dev. (%) ROC AUC ± std. dev. Train+Test Time (min)
VGG 0.8935 ± 0.0111 0.8788 ± 0.0141 0.8635 ± 0.0123 74.000

Resnet 0.8916 ± 0.0064 0.8995 ± 0.0078 0.8518 ± 0.0144 84.618
GLCM + ECOC 0.7414 ± 0.0057 0.5553 ± 0.0041 0.6941 ± 0.0115 9.829

LBP + ECOC 0.7160 ± 0.0072 0.4976 ± 0.0467 0.6695 ± 0.0097 9.211
SFTA + ECOC 0.4203 ± 0.0981 0.3858 ± 0.0915 0.5847 ± 0.1269 191.691

16 hr

Partially 
Differentiated

Partially Spread

24 hr 48 hr

36 hr24 hr23 hr

12 hr

29 hr

Fig. 3. Final image class prediction overlaid on original image, for both classes, over time. Changes are observed from spread (cyan) to differentiated (blue)
in the partially differentiated colonies (top) and from dense (green) to spread in the partially spread colonies (bottom) with areas of debris (red) located in
the bottom right image.

Fig. 4. Graphs of normalized colony pixel area over a 48 hour period. A linear increase in spread and dense cell colony areas is magnified under exposure to
nicotine. However, significant changes in the total area of differentiated colonies over time are not observed, indicating that nicotine does not have a neuronal
effect on Huntington’s disease stem cells.

Fig. 5. Graphs of Receiver Operating Characteristic Curves for Classifiers

measurements, these findings indicate that nicotine does not
have toxic effect on overall colony health or development,

and is directing colonies away from pluripotency, towards
intermediate progenitor phenotypes associated with the spread
morphology.

V. CONCLUSION & DISCUSSION

In this paper, deep learning and pattern recognition are used
to classify stem cell colony ROI crops into four homogeneous,
morphological classes that have implications on cellular be-
havior and phenotype. The deep CNN method outperforms
multi-support vector machine error correcting output codes
classifiers trained on texture feature vectors by over 25%,
achieving a ROC AUC of 87%. The use of a CNN model
allows circumvents the need to hand-craft feature maps for
each data type and is robust against changes in illumination
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TABLE IV
CONFUSION MATRIX FOR CLASSIFICATIONS OF PARTIALLY DIFFERENTIATED AND PARTIALLY SPREAD TESTING IMAGES WITH PERCENT OF TOTAL

Class Stride
Size

Partially
Differentiated (%)

Partially Spread (%) Dense (%) Differentiated (%) Spread (%) Debris (%)

Part Differentiated 64 343 (23.90) 106 (7.38) 296 (20.62) 491 (34.21) 158 (11.01) 41 (2.85)
Part Differentiated 32 396 (27.59) 96 (6.68) 281 (19.58) 465 (32.40) 161 (11.21) 36 (2.50)

Part Spread 64 233 (19.03) 766 (62.58) 0(0) 195 (15.93) 39 (3.18) 1 (0.08)
Part Spread 32 187 (15.27) 827 (67.56) 0 (0) 150 (12.25) 59 (4.82 ) 1 (0.08)

TABLE V
CONFUSION MATRICES ASSOCIATED WITH RESNET18 ROC CURVE AT

VARIOUS CLASSIFICATION THRESHOLDS

Threshold = 0.2 Debris Dense Differentiated Spread
Debris 367 6 1 3
Dense 4 378 0 32

Differentiated 0 0 70 6
Spread 5 17 4 814

Threshold = 0.7 Debris Dense Differentiated Spread
Debris 355 12 1 13
Dense 7 365 0 65

Differentiated 0 0 66 10
Spread 14 33 8 767

and contrast. the A patch based classification method is
implemented to accurately detect cell colony subtypes within
multi-label, time-lapse, gray scale images. Prediction maps of
multi-label images are visualized and the localized areas of
each class are measured over time across the entire dataset.
Experimental findings indicate that nicotine has a minimal
neuronal effect on Huntington’s disease induced pluripotent
cells, as a large increase in differentiated colony area is not
observed in either under control or experimental conditions.
A steady increase in dense and spread colony areas implies
that nicotine does not have a toxic effect on the cells at the
experimental concentrations, and stimulates colony growth at
low levels. Without the use of molecular biomarkers, it is
difficult to localize cell area within heterogeneous colonies.
Experimental analysis for which ground-truth is not provided
via molecular biomarkers is often tedious, biased and inaccu-
rate, taking many months to perform by-hand. While this work
allows for the automated detection of cellular behavior changes
using pattern recognition and deep learning, the results can
be improved in the following ways: 1. incorporating temporal
information; 2. testing on other datasets to validate model
robustness; 3. testing multiple custom network configurations
and comparing to standard methods (comprehensively); 4.
performing statistical analysis of experimental findings. Along
with the completed work, these improvements lend to increas-
ing the accuracy and reliability of biological data analysis
involving cellular microscopy.
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